

Electron Transport Chain

Dr. Pramod Kumar Mahish

Asst. Professor and Head

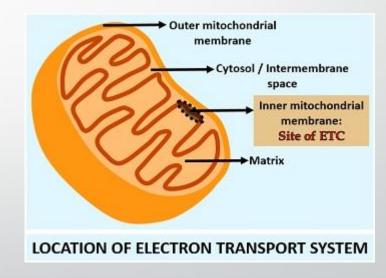
Dept. of Biotechnology,

Govt. Digvijay PG College Rajnandgaon (C.G.)

drpramodkumarmahish@gmail.com

Introduction

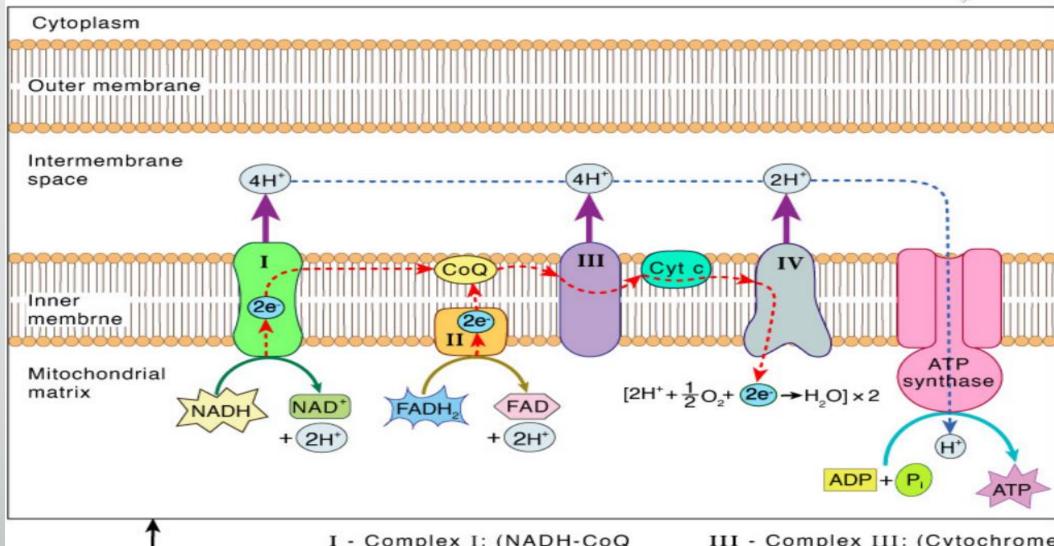
- The electron transport chain (ETC) is a group of proteins and organic molecules found in the inner membrane of mitochondria.
- Each chain member transfers electrons in a series of oxidation-reduction (redox) reactions to form a proton gradient that drives ATP synthesis.

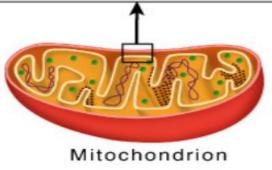

Discovery

 American biochemist, Albert Lehninger, discovered the electrontransport chain in 1961.

Location and Complexes

- In eukaryotes, multiple copies of electron transport chain components are located in the inner membrane of mitochondria.
- The complete ETC was found to have four membrane-bound complexes named complex I, II, III, and IV and two mobile electron carriers, namely coenzyme Q and cytochrome c.




Significance of ETC

- Regeneration of electron carriers: Reduced electron carriers NADH and FADH2 pass their electrons to the chain, turning them back into NAD+ and FAD. This function is vital because the oxidized forms are reused in glycolysis and the citric acid cycle (Krebs cycle) during cellular respiration.
- Generating proton gradient: The transport of electron through the chain results in a gradient of a proton across the inner membrane of mitochondria, later used in ATP synthesis.

Critical steps of the electron transport chain

- Donation of electrons by electron carriers NADH and FADH₂
- Transfer of electrons by mobile electron carriers and proton pumping
- Splitting of oxygen to form water
- Synthesis of ATP

- I Complex I: (NADH-CoQ oxidoreductase)
- II Complex II: (Succinate dehydrogenase)
- CoQ Coenzyme Q (Ubiquinone)

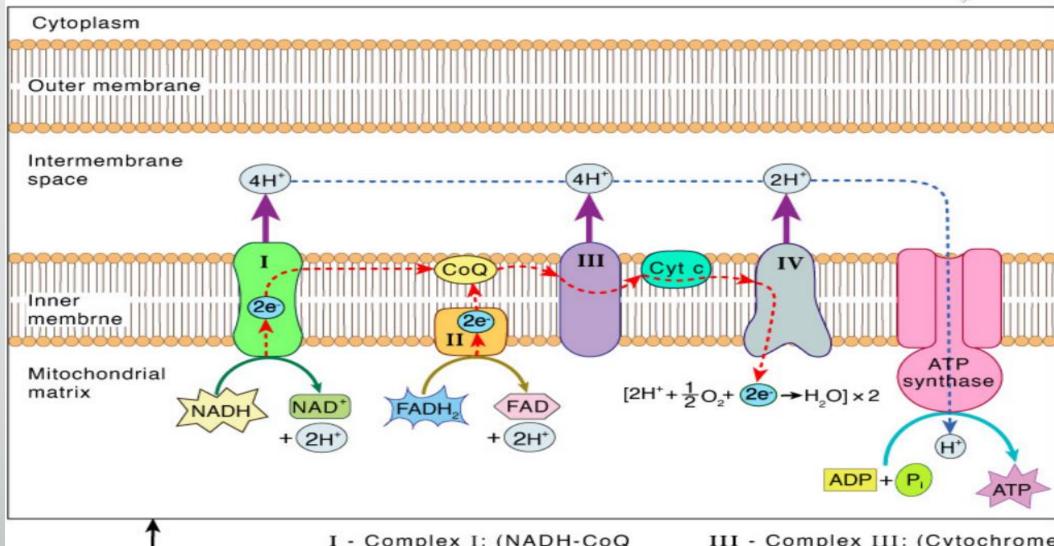
- III Complex III: (Cytochrome bc1 complex)
- IV Complex IV: (Cytochrome c oxidase)

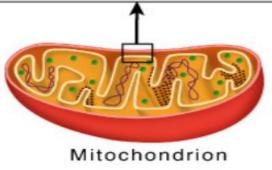
Cyt c - Cytochrome c

Complex I

- Transfer of Electrons from NADH to Coenzyme Q
- It is found to be composed of one flavin mononucleotide (FMN) and sixseven iron-sulfur centers (Fe-S) as cofactors
- The process starts by catalyzing the oxidation of NADH to NAD+ by transferring the two electrons
- The above process allows Complex I to pump four protons (H⁺) from the mitochondrial matrix to the intermembrane space, establishing the proton gradient.

Complex II


- Transfer of Electrons from FADH₂ to Coenzyme Q
- It consists of several Fe-S centers
- $FADH_2 + CoQ \rightarrow FAD^+ + CoQH_2$
- CoQ receives electrons from Complex I and Complex II and gets reduced to CoQH₂
- Complex II is thus not a part of creating the proton gradient in the ETC.


Complex III

- Transfer of Electrons from CoQH₂ to Cytochrome c
- It is composed of cytochrome b, c, and a specific Fe-S center
- Complex III catalyzes the transfer of two electrons from CoQH₂ to cytochrome c
- CoQH₂ + 2 cyt c (Fe³⁺) \rightarrow CoQ + 2 cyt c (Fe²⁺) + 4H⁺
- Complex III is similar to complex I across the inner membrane of mitochondria, thus forming a proton gradient.

Complex IV

- Transfer of Electrons from Cytochrome c to Oxygen
- Complex IV involves transferring two electrons from cytochrome c to molecular oxygen (O_2) , the final electron acceptor, thus forming water (H_2O) .
- The removal of H⁺ from the system pumps two protons across the membrane, forming a proton gradient.
- 4 cyt c (Fe²⁺) + O₂ \rightarrow 4 cyt c (Fe³⁺) + H₂O

- I Complex I: (NADH-CoQ oxidoreductase)
- II Complex II: (Succinate dehydrogenase)
- CoQ Coenzyme Q (Ubiquinone)

- III Complex III: (Cytochrome bc1 complex)
- IV Complex IV: (Cytochrome c oxidase)

Cyt c - Cytochrome c

Oxidative Phosphorylation

- The proton gradient is formed within the mitochondrial matrix, and the intermembrane space is called the proton motive force.
- ATP synthase is somewhat similar to a turbine in a hydroelectric power plant, which is run by H+ while moving down their concentration gradient.
- As ATP synthase turns, it catalyzes the addition of phosphate to ADP, thus forming ATP.

Chemical Equation

$$6O_2 + C_6H_{12}O_6 + 38 \text{ ADP} + 39Pi \rightarrow 38 \text{ ATP} + 6CO_2 + 6H_2O$$

Reactants (Inputs)

- ✓ NADH
- **✓** FADH₂
- **✓** O₂

End Products (Outputs)

- ✓ NAD⁺
- ✓ FAD
- **✓** H₂O
- **✓** ATP

Thankyou